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 

Abstract— Burr XII distribution is widely used in different 

disciplines including engineering, business, besides others. A 

non-parametric density estimation based technique is applied to 

estimate the parameters of the three-parameter Burr XII 

distribution. A comparison between the proposed approach and 

the maximum likelihood estimators is performed. A Monte 

Carlo experiment of size 10000 is used to test the new estimator 

for different parameters of the true density. An improvement in 

the mean integrated square error as a measure of the closeness 

of the estimated density and the true density is noticed.  

 
Index Terms— Burr XII distribution, Non-parametric 

density, Kernel estimation, Cramer von Mises statistic.  

 

I. INTRODUCTION 

The Burr XII distribution has received a considerable 

amount of research since it was introduced in 1942 by I. W. 

Burr in Burr [2]. Applications of the distribution since it was 

introduced covered large extent of disciplines which include 

among other areas engineering, business, quality, mineralogy, 

as well as reliability and life testing. Researchers also showed 

interest in Burr distribution due to its relationships to other 

distributions which give the Burr distribution a flexibility to 

model many different applications. The first to introduce such 

relationships is Hatke [4] while Burr and Cislak [3] expanded 

the work of Hatke [4] to cover a wider spectrum of various 

distributions. In 1980 Tadikamalla [14] presented 

mathematical relations for Burr related distributions, where 

he showed that Lomax distribution is a special case of Burr 

XII distribution and the compound Weibull distribution is a 

generalization of the Burr distribution. In addition, he showed 

that Weibull, logistic, log logistic, normal, and lognormal 

distributions can be viewed as special cases of the Burr XII 

distribution through a proper choice of the parameters of the 

distribution. He also found different transformations that can 

be used to transform Burr XII to Burr III and Burr II to Burr 

XII (for details see Tadikamalla[14])). A number of authors 

have considered estimation of the parameters of the Burr XII 

distribution population. Zimmer et. al. [16] considered 
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parameter estimation for the two parameter Burr XII 

distribution based on complete as well as censored samples 

with various sampling schemes. Watkins [15] used the 

maximum likelihood estimation (MLE) method to estimate 

the parameters of the three parameter Burr XII and compared 

the obtained model to a Weibull model for a given set odd at 

using a Discriminant statistic for the comparison.He 

concluded that Burr XII model is a better model compared to 

the Weibull model for the given data. In another study 

Alyousef [1] used the MLE technique to estimate the 

parameters of a two parameter Burr XII distribution from a 

doubly censored data. While Shao[11] generalized in a sense 

the approach introduced by Watkins [15] for both complete 

and censored samples. Jamjoom [7] estimated the parameters 

of the two parameter Burr XII distribution using the MLE and 

the least squares method. Olapade [9] suggested the six 

parameter Burr XII distribution through a generalization of 

the five parameter Burr XII distribution based on a 

transformation involving two independent random variables 

from exponential and gamma distributions. In our article the 

interest is to estimate the parameters of the three parameter 

Burr XII distribution based on small samples by minimizing a 

goodness of fit statistic. The approach decided on covering 

the varieties of shapes the distribution take depending on the 

values of the parameters considered. Section 2 discusses the 

solution of the ML equations. The method is based on 

numerically solving an equivalent nonlinear equation using 

an iterative scheme. The method is surveyed and the stopping 

rule is stated. In section 3 the application of a non-parametric 

density estimator to obtain estimates of the parameters of the 

three parameter Burr XII distribution is discussed. A Monte 

Carlo comparison of the maximum likelihood estimators and 

the minimum distance estimators is given. The integrated 

square error between the true density and the estimated true 

model for sample sizes of 5(5)20 for10000 Monte Carlo 

repetitions is used. A comparison is made between the 

estimators for various sample sizes (5(5)20) with different 

values of the three parameters. 

II. MAXIMUM LIKELIHOOD ESTIMATORS FOR THE 

PARAMETERS OF THE 3 PARAMETER BURR XII 

DISTRIBUTION 

 

The three parameter Burr XII distribution has a probability 

density function that takes the form: 
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This form covers a variety of functional shapes depending 

on the values of the three parameters 
 ,,k

respectively. A 

Burr XII distribution will be denoted by Burr(
 ,,k

), The 

following figure (Fig. 1) shows different Burr(
 ,,k

) 

shapes with various 


parameter values to cover the most  

variations in shape that Burr(
 ,,k

) takes depending on 


. 
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Fig. 1 The specrum of different shapes for three parameter 

Burr XII distribution Burr(
 ,,k

) for different 


 values 
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Fig. 2 The specrum of different shapes for three parameter 

Burr XII distribution Burr (  ,,k ) for different k  values. 
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Fig. 3 The specrum of different shapes for three parameter 

Burr XII distribution Burr (  ,,k ) for different   values 

The likelihood function of 
  ,,| kxf

 is given by: 
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The corresponding log likelihood function is: 
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Hence, the maximum likelihood equations will be: 
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The goal now is to solve the maximum likelihood 

equations simultaneously to find the estimates 

 ˆ,ˆ,ˆ andk
. Solving these equations is based on a 

modification of M.J.D. Powell’s hybrid algorithm. This 

algorithm is a variation of Newton’s method, which takes 

precautions to avoid large step sizes or increasing residuals. 

For further description, see More et al. [8]. 

Samples from the three parameter Burr XII distribution are 
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generated using the inverse transformation technique for the 

distribution cumulative distribution function given by: 
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The subroutine RNSET from IMSL is used to initialize a 

random seed for use with a random number generator. 

III. MINIMUM DISTANCE ESTIMATION 

Minimum distance estimation (MDE) is a method of 

Discriminant analysis based on a distance which can be used 

for continuous, discrete or mixed variables with known or 

unknown distributions. The method does not depend on one 

specific distance, so it is the investigator which has to decide 

the distance to be used according to the nature of the data. The 

method also makes use of the knowledge of prior 

probabilities and provides a numerical value of the 

confidence in the goodness of allocation of every data 

setunder study. 

The method was first proposed by Wolfwitz in 1957.  Parr 

and Schucany [10] demonstrated the robustness of MDE in 

predicting the location of the symmetric distributions.  

Hobbs, Moore, and James [5] used MDE to find the location 

of the gamma distribution.  Similarly, Hobbs, Moore, and 

Miller [6] used MDE to estimate the location of the Weibull. 

Sultan [12] described a method for the calculation of the 

three-parameter Weibull distribution function from censored 

samples using MDE criteria. 

In this section, it is required to estimate 
 ˆ,ˆ,ˆ andk

 

for the 3-parameter Burr XII distribution such that a goodness 

of fit statistic is minimized. The Cramer von Mises statistics 

W2
 defined as: 
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where 
)(ˆ xF

 is the empirical distribution function for the 

sample and 
F x0 ( )

 is a completely specified distribution 

function. The computational formula: 
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is to be used. For this computational formula the 

non-parametric kernel estimator with a Gaussian kernel will 

be used to replace 
)(ˆ xF

instead of the step function 

i

n

 05.

.  This kernel estimator will be: 
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 where 
( )x

 denotes the C.D.F for a standard normal 

random variable. Thus, the Cramer von Mises statistics W2
 

will be: 
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The optimal value of the window width h ( in the MISE 

sense) depends on the choice of the kernel K, the underlying 

unknown density f(x) and the sample size i.e. 

      h f K f f x f nopt  1 2 3. .
 

A reasonable approximation for this optimal value for 

basically a normal sample was suggested to be h kn


1

5   

where k is a real constant.  Although this approximation 

simplifies the optimal expression for the window width and 

works fine with the normal distribution it is not as good for 

other distributions. This leads to the idea of introducing the 

underlying density in another approximating expression for 

that h. The explicit expression for  
h opt   is given as: 
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where: 

m 2  denotes the kernel second moment which equals 1 in 

case of Gaussian kernel and 
 K t dt2


 is simply equal to 

1

2   
Therefore 
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The development of the above formula for the Burr XII 

distribution is real lengthy and complicated in terms of 

finding the integral of the squared second derivative. An 

alternative for computing the window width which is more 

efficient computationally and gives a good improvement is to 

choose an empirical h which equals sn


1

5  where  s  

represents the sample standard deviation.  This suggested h 

showed MISE which is close enough to the optimal 

theoretical and without a need to extensive computations. 

The choice of the h parameter for the univariate case, can 
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frequently be chosen visually in a satisfactory manner. The 

behavior of different distributions under a proposed choice of 

the h parameter had been studied in Moore and Sultan 

[13].The choice of h is data dependent which is a function of 

both the sample standard deviation and the sample size. 

To evaluate the performance of the method a Monte Carlo 

experiment is designed. The inverse C.D.F technique (as 

mentioned in section 2.) is used for generating  BURR XII 

random deviates of sample sizes 5(5)20 from ten different 

Burr(
 ,,k

) with various parameters to cover a wide span 

of shapes of the distribution. The data based choice of the 

smoothing parameter is calculated for each of 10000 different 

samples. The integrated square error ISE given as: 

2
ˆ( ) ( )ISE f x f x dx  

 
 

is computed for each sample. 

The estimation techniques used here include the MLE and 

the proposed method for the ten different set of chosen 

parameters. An estimate of the mean integrated square error 

MISE is obtained by averaging the ISE from the 10000 Monte 

Carlo repetitions for both estimation techniques. Likewise, an 

estimate of the standard deviation of MISE is computed 

(standard deviation is shown between brackets in italics in 

tables) and the results are given in the following tables (table 

1. to table 10.) 

Table 1: Results from Monte Carlo for BURR XII(3,30,2) for 

sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 
0.544720 

(0.466334) 

0.202548 

(0.377298) 

10 
0.351890 

(0.338025) 

0.07531803 

(0.126015) 

15 
0.205944 

(0.223296) 

0.04792036 

(0.09288976) 

20 
0.152186 

(0.173282) 

0.03669148 

(0.07058872) 

 

Table 2: Results from Monte Carlo for BURR XII(3,10,2) for 

sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 
0.510601 

(0.336927) 

0.136885 

(0.248220) 

10 
0.469155 

(0.261774) 

0.07671752 

(0.09680430) 

15 
0.218857 

(0.164992) 

0.04532990 

(0.08676828) 

20 
0.193021 

(0.140677) 

0.03739739 

(0.07081899) 

 

 

 

Table 3: Results from Monte Carlo for BURR XII(3,90,2) for 

sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 
0.801687 

(0.709705) 

0.306618 

(0.565515) 

10 
0.562406 

(0.531487) 

0.115882 

(0.187895) 

15 
0.439533 

(0.420888) 

0.08184177 

(0.122786) 

20 
0.298516 

(0.325820) 

0.05752452 

(0.101212) 

 

Table 4: Results from Monte Carlo for BURR XII(3,270,2) 

for sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 

1.19108 

(1.01558) 

0.459273 

(0.853183) 

10 

0.812075 

(0.751275) 

0.185482 

(0.318828) 

15 

0.499699 

(0.522184) 

0.125609 

(0.254877) 

20 

0.396965 

(0.436069) 

0.09019919 

(0.185015) 

 

Table5: Results from Monte Carlo for BURR XII(3,30,1) for 

sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 
1.12011 

(0.973649) 

0.431026 

(0.799230) 

10 
0.757022 

(0.714205) 

0.167996 

(0.292636) 

15 
0.587841 

(0.542831) 

0.120374 

(0.187530) 

20 
0.372518 

(0.384577) 

0.09123140 

(0.167794) 
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Table 6: Results from Monte Carlo for BURR XII(3,30,3) for 

sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 

0.504715 

(0.327515) 

0.139340 

(0.249265) 

10 

0.321223 

(0.217385) 

0.05724884 

(0.104822) 

15 

0.265678 

(0.173472) 

0.04240599 

(0.07426199) 

20 

0.182958 

(0.134752) 

0.03583250 

(0.06901237) 

 

Table 7: Results from Monte Carlo for BURR XII(3,30,4) for 

sample size 5(5)20 

Sampl

e 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 

0.212859 

(0.198331) 

0.09501764 

(0.178328) 

10 

0.122181 

(0.126701) 

0.03938483 

(0.05361764) 

15 

0.07449433 

(0.08363305) 

0.02663498 

(0.03791310) 

20 

0.05778327 

(0.06674877) 

0.02192475 

(0.02839188) 

 

Table 8: Results from Monte Carlo for BURR XII(1,10,2) for 

sample size5(5)20, # of Cases ≤ 1000 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 
1.84998 

(0.869931) 

1.811422 

(3.01449) 

10 
1.82750 

(0.893112) 

1.40439 

(3.08512) 

15 
1.75817 

(0.823043) 

1.06517 

(2.56277) 

20 
1.72744 

(0.768595) 

0.796584 

(2.32056) 

 

Table 9:Results from Monte Carlo for BURR XII(7,10,2) for 

sample size 5(5)20 

Sampl

e 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 0.460673 0.171447 

(0.370288) (0.416971) 

10 
0.252189 

(0.227956) 

0.05263787 

(0.08210582) 

15 
0.227696 

(0.189396) 

0.03804009 

(0.05411233) 

20 
0.195485 

(0.156004) 

0.03152648 

(0.04107207) 

 

Table 10: Results from Monte Carlo for BURR XII(15,10,2) 

for sample size 5(5)20 

Sample 

Size 

MISE(MLE) 

(STD.DEV) 

MISE(CVM) 

(STD.DEV) 

5 

1.16987 

(0.757150) 

0.380510 

(0.837787) 

10 

0.644153 

(0.502428) 

0.152516 

(0.194873) 

15 

0.517999 

(0.397166) 

0.107408 

(0.129575) 

20 

0.370839 

(0.302661) 

0.08224370 

(0.103112) 

 

The Monte Carlo experiment shows a significant 

improvement of the method over the classical MLE method 

for the BURR XII distribution with the given ten different 

parameter sets covering the various distribution shapes. 

The previous experiment could be considered as an 

investigation for the behavior of the proposed technique. The 

results showed an improvement in the MISE and hence it can 

be recommended to use the proposed technique for small 

sample sizes of 5(5)20 for which we limit our study. The 

procedure used can be described in the following three steps: 

- Different samples from BURR XII distribution with a 

given set of parameters for different sample sizes were 

generated using the inverse transformation technique. The 

uniform random number was generated using the RNUN 

routine from the IMSL. 

- The maximum likelihood estimators for the 3-parameters 

were computed using a quasi Newton method as discussed 

earlier. 

- The CvM statistic with 
 ,,k

 as the decision vector 

and with the given constraints (parameter space) on the 

values of the parameters was minimized.  

- The new parameter estimates were compared with those 

of maximum likelihood estimates using the ISE as a measure 

for the comparison. 

IV. AN EXAMPLE 

The new technique shows a significant improvement over 

the MLE method. In this section an example will be given to 

show the performance of the method over some given 

original density parameters. The example will show the 

generated sample from the distribution with a given set of 

original parameters 
 ,,k

 together with MLE parameters 
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and the proposed method parameters (shown as the kernel 

column in the table). The chosen window width h is given as 

well as the ISE from both methods of estimation. These 

values will be given in table 11, The corresponding graph of 

each density including the nonparametric density estimator 

will be given in figure Fig 4. 

 

Table 11: Results for a sample of size 10 from BURR 

XII(3,10,2) 

The 
Sample 

 

1.04144 , 0.873057 , 1.30356 , 0.672713   

1.27296 , 1.13557 , 0.793738 , 0.674266  

0.846105 , 0.472608 
Parame

ter 
Β κ λ h-value ISE 

Original 3 10 2 ـــــــــــ ـــــــــــ 

MLE 3.629 11.630 2.897 ــــــــــــ 
0.55888

5 

Kernel 2.934 17.680 2.469 
0.19338

2 
0.00018

3 
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Fig. 4 Original Burr(3,10,2) with different estimated densities 

for sample size 10 

 

The final conclusion is the minimum distance proposed 

estimation method using the CvMstatistic as a measure of the 

difference between a non-parametric estimator based on a 

suggested window width and a parametric density with 

unknown parameters gives in general a much smaller MISE 

value than the maximum likelihood method. 

 

REFERENCES 

 
[1] M. H. Alyousef, Estimation in doubly truncated Burr distribution, J. 

king Saud Univ., 14, 1-9, 2002 

[2] I. W. Burr, Cumulative frequency functions, Ann. Math. Stat. 13, 

215-232, 1942. 

[3] I .W. Burr and P .J. Cislak, On a general system of distributions: I, Its 

curve-shaped characteristics; II, The sample median. Journal of the 

American Statistical Association, 63, 627-635, 1968. 

[4] M .A Hatke, A certain cumulative probability function. Annals of 

Mathematical Statistics, 20, 461-463, 1949. 

[5] J. R. Hobbs ; A. H. Moore and W. James, Minimum distance estimation 

of the three parameter gamma distribution. IEEE Transactions on 

Reliability 33 NO. 3: 237-240, 1984. 

[6] J. R. Hobbs; A. H. Moore and R. M. Miller, Minimum distance 

estimation of the three parameter Weibull distribution. IEEE 

Transactions on Reliability 34 NO. 5: 495-496, 1985. 

[7] A. A. Jamjoom, Some useful formulae for Monte Carlo simulations 

relating to Burr type II, XII distribution, Journal of applied sciences, 6, 

553-558, 2006. 

[8] More et. al., User guide for MINPACK-1, Argonne National Labs 

Report ANL-80-74, Argonne, Illinois, 1980. 

[9] A.K. Olapade, On a six-parameter generalized Burr XII distribution, 

International Journal of Mathematics and Mathematical Sciences, 57, 

3069-3074, 2004. 

[10] W. C. Parr and W. R. Schucany, Minimum distance and robust 

estimation. JASA 75 NO 3 :616-624, 1980. 

[11] Q. Shao, Notes on maximum likelihood estimation for the 

three-parameter Burr XII distribution. Comput. Statist. Data Anal. 45, 

675–687, 2004. 

[12] A. M. Sultan A data driven parameter estimation for the three 

parameter Weibull population from censored samples, Mathematical 

and Computational Applications, Vol. 13, No. 2, pp. 129-136, 2008 

[13] A. M. Sultan and A. H. Moore, An application of non-parametric 

density estimation accepted publication in the 1990 joint national 

meeting, Anaheim, California 

[14] P. R. Tadikamalla, A look at the Burr and related distributions. Int. Stat. 

Rev., 48, 337-344, 1980. 

[15] A.J. Watkins, An algorithm for maximum likelihood estimation in the 

three parameter Burr XII distribution. Comput. Statist. Data Anal. 

32,19–27, 1999. 

[16] W.J. Zimmer; J.B Keats and F.K. Wang, The Burr XII distribution in 

reliability analysis. J. Qual. Tech. 30, 386–394, 1998. 

 
 

 

 

 


